f08 — Least-squares and Eigenvalue Problems (LAPACK) f08avc

NAG C Library Function Document

nag zgelqf (f08avc)

1 Purpose

nag_zgelqf (f08avc) computes the L@ factorization of a complex m by n matrix.

2 Specification

void nag_zgelqf (Nag_OrderType order, Integer m, Integer n, Complex al[],
Integer pda, Complex tau[], NagError *fail)

3 Description

nag_zgelqf (f08avc) forms the L() factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

If m < n, the factorization is given by:
A=(L 0)Q

where L is an m by m lower triangular matrix (with real diagonal elements) and @ is an n by n unitary
matrix. It is sometimes more convenient to write the factorization as

A= (L 0)(82)

A= LQI)

which reduces to

where @), consists of the first m rows of), and @), the remaining n — m rows.
If m > n, L is trapezoidal, and the factorization can be written
L
A= !
< Ly > “
where L, is lower triangular and L, is rectangular.

The LQ factorization of A is essentially the same as the QR factorization of A" since

A=(L O)Q@AH—QH<LOH).

The matrix @ is not formed explicitly but is represented as a product of min(m,n) elementary reflectors
(see the fO8 Chapter Introduction for details). Functions are provided to work with () in this representation
(see Section).

Note also that for any k < m, the information returned in the first k£ rows of the array a represents an L@
factorization of the first £ rows of the original matrix A.

4 References

None.

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by

[NP3645/7] f08ave. 1

f08avc NAG C Library Manual

order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix A.

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

4: a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].
On entry: the m by n matrix A.

On exit: if m < n, the elements above the diagonal are overwritten by details of the unitary matrix
() and the lower triangle is overwritten by the corresponding elements of the m by m lower
triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by details of the unitary matrix () and the
remaining elements are overwritten by the corresponding elements of the m by n lower trapezoidal
matrix L.

The diagonal elements of L are real.

5: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:
if order = Nag_ColMajor, pda > max(1, m);
if order = Nag_RowMajor, pda > max(1,n).

6: tau[dim] — Complex Output
Note: the dimension, dim, of the array tau must be at least max(1, min(m,n)).

On exit: further details of the unitary matrix Q).

7: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

f08ave.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08avc

On entry, pda = (value).
Constraint: pda > 0.
NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix A + FE, where
1E]l, = O(e)l|All,,

and ¢ is the machine precision.

8 Further Comments

§m2(3n—m) if m<n or

The total number of real floating-point operations is approximately

§n2(3m —n) if m > n.

To form the unitary matrix () this function may be followed by a call to nag_zunglq (f08awc):
nag_zunglqg (order,n,n,MIN(m,n),&a,pda,tau,&fail)

but note that the first dimension of the array a, specified by the parameter pda, must be at least n, which
may be larger than was required by nag zgelqf (f08avc).

When m < n, it is often only the first m rows of () that are required, and they may be formed by the call:
nag_zunglqg (order,m,n,m,&a,pda,tau,&fail)

To apply @ to an arbitrary complex rectangular matrix C, this function may be followed by a call to
nag_zunmlq (f08axc). For example,

nag_zunmlg (order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n), &a,pda,
tau, &c,pdc,&fail)

forms the matrix product C' = Q¥ C, where C is m by p.
The real analogue of this function is nag_dgelqf (f08ahc).

9 Example

To find the minimum-norm solutions of the under-determined systems of linear equations
A:L'l = bl and AI’Z = b2

where b, and b, are the columns of the matrix B,

[NP3645/7] f08ave.3

f08avc

NAG C Library Manual

0.28 — 0.36: 0.50 —0.867 —0.77 —0.48: 1.58 + 0.66:
A= -050—-1.100 —-1.2140.76i —0.32—-0.24i —-0.27—1.15:
0.36 —0.51¢ —0.07+4+1.33¢ —-0.754+047: —0.08+ 1.01:
and
—1.35+0.19¢ 4.83 —2.67:
B= 941 —3.561 —7.28 +3.344
—7.57 4+ 6.93: 0.62 4 4.53¢
9.1 Program Text
/* nag_zgelgf (f08avc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
Integer i, j, m, n, nrhs, pda, pdb, tau_len;
Integer exit_status=0;

#i
#d
#d

#e
#d
#d

#e

NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *b=0, *tau=0;
fdef NAG_COLUMN_MAJOR
efine A(I,J) al(J-1)=*pda
efine B(I,J) b[(J-1)*pdb
order = Nag_ColMajor;
lse

efine A(I,J) al(I-1)+*pda
efine B(I,J) b[(I-1)=*pdb
order Nag_RowMajor;
ndif

+ +
H H

+ +
g

INIT _FAIL(fail);

Vprintf ("f08avc Example Program Results\n\n");

/* Skip heading in data file =*/
Vscanf ("$*[*\n] ");

Vscanf ("%$1d%1d%1d%s*["\n] ", &m, &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = n;
#else
pda = n;
pdb = nrhs;
#endif
tau_len = MIN(m,n);
/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||
(b = NAG_ALLOC(n * nrhs, Complex)) ||
! (tau = NAG_ALLOC(tau_len, Complex)))
f08avc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08avc

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A and B from data file =*/
for (i = 1; 1 <= m; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,7j).im);
}
Vscanf ("$*[*\n] ");
for (i = 1; 1 <= m; ++1)
{
for (j = 1; j <= nrhs; ++j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ("$*[*\n] ");

/* Compute the LQ factorization of A */
fO8avc(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8avc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Solve L*Y = B, storing the result in B */
fO07tsc(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, m,
nrhs, a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07tsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥
/* Set rows (M+1l) to N of B to zero *x/
if (m < n)
{
for (i =m + 1; 1 <= n; ++1i)
{
for (j = 1; j <= nrhs; ++j)
{
B(i,j).re = 0.0;
B(i,j).im = 0.0;
}
}
}
/* Compute minimum-norm solution X = (Q**H)*B in B */

fO8axc(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, m, a, pda,
tau, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08axc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print minimum-norm solution(s) */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
Nag_BracketForm, "%7.4f", "Minimum-norm solution(s)",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

END:

[NP3645/7] f08ave.5

f08avc

if (a) NAG_FREE (a);
if (b) NAG_FREE (b);
if (tau) NAG_FREE (tau);
return exit_status

i

9.2 Program Data

fO08avc Example Program Data

3 4 2
(0.28,-0.36) (0.50,-0.86) (-0.77,-0.48)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24)
(0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47)
(-1.35, 0.19) (4.83,-2.67)
(9.41,-3.56) (-7.28, 3.34)
(-7.57, 6.93) (0.62, 4.53)

9.3 Program Results

fO8avc Example Program Results

Minimum-norm solution(s)
1
2.8501, 6.4683
1.6264,-0.7799
6.9290, 4.6481
1.4048, 3.2400

2
1.1682,-1.8886)
2.8377, 0.7654)
1.7610,-0.7041)
1.)

(-
(
(
(0518,-1.6365

) (=
)
) (=
)

NAG C Library Manual

:Values of M, N and NRHS
(1.58, 0.606)
(-0.27,-1.15)

(-0.08, 1.01) :End of matrix A

:End of matrix B

f08avc.6 (last)

[NP3645/7]

	f08avc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

