f08 — Least-squares and Eigenvalue Problems (LAPACK) f08avc

NAG C Library Function Document

nag zgelqf (f08avc)

1 Purpose

nag_zgelqf (f08avc) computes the L@ factorization of a complex m by n matrix.

2 Specification

void nag_zgelqf (Nag_OrderType order, Integer m, Integer n, Complex al[],
Integer pda, Complex tau[], NagError *fail)

3 Description

nag_zgelqf (f08avc) forms the L() factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

If m < n, the factorization is given by:
A=(L 0)Q

where L is an m by m lower triangular matrix (with real diagonal elements) and @ is an n by n unitary
matrix. It is sometimes more convenient to write the factorization as

A= (L 0)(82)

A= LQI)

which reduces to

where @), consists of the first m rows of ), and @), the remaining n — m rows.
If m > n, L is trapezoidal, and the factorization can be written
L
A= !
< Ly > “
where L, is lower triangular and L, is rectangular.

The LQ factorization of A is essentially the same as the QR factorization of A" since

A=(L O)Q@AH—QH<LOH).

The matrix @ is not formed explicitly but is represented as a product of min(m,n) elementary reflectors
(see the fO8 Chapter Introduction for details). Functions are provided to work with () in this representation
(see Section ).

Note also that for any k < m, the information returned in the first k£ rows of the array a represents an L@
factorization of the first £ rows of the original matrix A.

4 References

None.

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
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order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix A.

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

4: a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].
On entry: the m by n matrix A.

On exit: if m < n, the elements above the diagonal are overwritten by details of the unitary matrix
() and the lower triangle is overwritten by the corresponding elements of the m by m lower
triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by details of the unitary matrix () and the
remaining elements are overwritten by the corresponding elements of the m by n lower trapezoidal
matrix L.

The diagonal elements of L are real.

5: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:
if order = Nag_ColMajor, pda > max(1, m);
if order = Nag_RowMajor, pda > max(1,n).

6: tau[dim] — Complex Output
Note: the dimension, dim, of the array tau must be at least max(1, min(m,n)).

On exit: further details of the unitary matrix Q).

7: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6  Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.
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On entry, pda = (value).
Constraint: pda > 0.
NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7  Accuracy

The computed factorization is the exact factorization of a nearby matrix A + FE, where
1E]l, = O(e)l|All,,

and ¢ is the machine precision.

8 Further Comments

§m2(3n—m) if m<n or

The total number of real floating-point operations is approximately

§n2(3m —n) if m > n.

To form the unitary matrix () this function may be followed by a call to nag_zunglq (f08awc):
nag_zunglqg (order,n,n,MIN(m,n),&a,pda,tau,&fail)

but note that the first dimension of the array a, specified by the parameter pda, must be at least n, which
may be larger than was required by nag zgelqf (f08avc).

When m < n, it is often only the first m rows of () that are required, and they may be formed by the call:
nag_zunglqg (order,m,n,m,&a,pda,tau,&fail)

To apply @ to an arbitrary complex rectangular matrix C, this function may be followed by a call to
nag_zunmlq (f08axc). For example,

nag_zunmlg (order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n), &a,pda,
tau, &c,pdc,&fail)

forms the matrix product C' = Q¥ C, where C is m by p.
The real analogue of this function is nag_dgelqf (f08ahc).

9  Example

To find the minimum-norm solutions of the under-determined systems of linear equations
A:L'l = bl and AI’Z = b2

where b, and b, are the columns of the matrix B,
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0.28 — 0.36: 0.50 —0.867 —0.77 —0.48: 1.58 + 0.66:
A= -050—-1.100 —-1.2140.76i —0.32—-0.24i —-0.27—1.15:
0.36 —0.51¢ —0.07+4+1.33¢ —-0.754+047: —0.08+ 1.01:
and
—1.35+0.19¢ 4.83 —2.67:
B= 941 —3.561 —7.28 +3.344
—7.57 4+ 6.93: 0.62 4 4.53¢
9.1 Program Text
/* nag_zgelgf (f08avc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>
int main(void)
{
/* Scalars */
Integer i, j, m, n, nrhs, pda, pdb, tau_len;
Integer exit_status=0;

#i
#d
#d

#e
#d
#d

#e

NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *b=0, *tau=0;
fdef NAG_COLUMN_MAJOR
efine A(I,J) al(J-1)=*pda
efine B(I,J) b[(J-1)*pdb
order = Nag_ColMajor;
lse

efine A(I,J) al(I-1)+*pda
efine B(I,J) b[(I-1)=*pdb
order Nag_RowMajor;
ndif

+ +
H H

+ +
g

INIT _FAIL(fail);

Vprintf ("f08avc Example Program Results\n\n");

/* Skip heading in data file =*/
Vscanf ("$*[*\n] ");

Vscanf ("%$1d%1d%1d%s*["\n] ", &m, &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = n;
#else
pda = n;
pdb = nrhs;
#endif
tau_len = MIN(m,n);
/* Allocate memory */
if ( !(a = NAG_ALLOC(m * n, Complex)) ||
(b = NAG_ALLOC(n * nrhs, Complex)) ||
! (tau = NAG_ALLOC(tau_len, Complex)) )
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{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A and B from data file =*/
for (i = 1; 1 <= m; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf (" ( %1f , %1f )", &A(i,j).re, &A(i,7j).im);
}
Vscanf ("$*[*\n] ");
for (i = 1; 1 <= m; ++1)
{
for (j = 1; j <= nrhs; ++j)
Vscanf (" ( %1f , %1f )", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ("$*[*\n] ");

/* Compute the LQ factorization of A */
fO8avc(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8avc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Solve L*Y = B, storing the result in B */
fO07tsc(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, m,
nrhs, a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07tsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥
/* Set rows (M+1l) to N of B to zero *x/
if (m < n)
{
for (i =m + 1; 1 <= n; ++1i)
{
for (j = 1; j <= nrhs; ++j)
{
B(i,j).re = 0.0;
B(i,j).im = 0.0;
}
}
}
/* Compute minimum-norm solution X = (Q**H)*B in B */

fO8axc(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, m, a, pda,
tau, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08axc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print minimum-norm solution(s) */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,
Nag_BracketForm, "%7.4f", "Minimum-norm solution(s)",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

END:

[NP3645/7] f08ave.5



f08avc

if (a) NAG_FREE (a);
if (b) NAG_FREE (b);
if (tau) NAG_FREE (tau);
return exit_status

i

9.2 Program Data

fO08avc Example Program Data

3 4 2
( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47)
(-1.35, 0.19) ( 4.83,-2.67)
( 9.41,-3.56) (-7.28, 3.34)
(-7.57, 6.93) ( 0.62, 4.53)

9.3 Program Results

fO8avc Example Program Results

Minimum-norm solution(s)
1
2.8501, 6.4683
1.6264,-0.7799
6.9290, 4.6481
1.4048, 3.2400

2
1.1682,-1.8886)
2.8377, 0.7654)
1.7610,-0.7041)
1. )

(-
(
(
( 0518,-1.6365

) (=
)
) (=
)
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:Values of M, N and NRHS
( 1.58, 0.606)
(-0.27,-1.15)

(-0.08, 1.01) :End of matrix A

:End of matrix B

f08avc.6 (last)
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