
NAG C Library Function Document

nag_zgelqf (f08avc)

1 Purpose

nag_zgelqf (f08avc) computes the LQ factorization of a complex m by n matrix.

2 Specification

void nag_zgelqf (Nag_OrderType order, Integer m, Integer n, Complex a[],
Integer pda, Complex tau[], NagError *fail)

3 Description

nag_zgelqf (f08avc) forms the LQ factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

If m � n, the factorization is given by:

A ¼ L 0 Þð Q

where L is an m by m lower triangular matrix (with real diagonal elements) and Q is an n by n unitary
matrix. It is sometimes more convenient to write the factorization as

A ¼ L 0 Þð Q1

Q2

��

which reduces to

A ¼ LQ1;

where Q1 consists of the first m rows of Q, and Q2 the remaining n�m rows.

If m > n, L is trapezoidal, and the factorization can be written

A ¼ L1

L2

��
Q

where L1 is lower triangular and L2 is rectangular.

The LQ factorization of A is essentially the same as the QR factorization of AH , since

A ¼ L 0 Þð Q , AH ¼ QH LH

0

��
:

The matrix Q is not formed explicitly but is represented as a product of minðm;nÞ elementary reflectors
(see the f08 Chapter Introduction for details). Functions are provided to work with Q in this representation
(see Section 8).

Note also that for any k < m, the information returned in the first k rows of the array a represents an LQ
factorization of the first k rows of the original matrix A.

4 References

None.

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08avc

[NP3645/7] f08avc.1

order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: m – Integer Input

On entry: m, the number of rows of the matrix A.

Constraint: m � 0.

3: n – Integer Input

On entry: n, the number of columns of the matrix A.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ when
order ¼ Nag ColMajor and at least maxð1; pda�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the m by n matrix A.

On exit: if m � n, the elements above the diagonal are overwritten by details of the unitary matrix
Q and the lower triangle is overwritten by the corresponding elements of the m by m lower
triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by details of the unitary matrix Q and the
remaining elements are overwritten by the corresponding elements of the m by n lower trapezoidal
matrix L.

The diagonal elements of L are real.

5: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor, pda � maxð1;mÞ;
if order ¼ Nag RowMajor, pda � maxð1;nÞ.

6: tau½dim� – Complex Output

Note: the dimension, dim, of the array tau must be at least maxð1;minðm; nÞÞ.
On exit: further details of the unitary matrix Q.

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

f08avc NAG C Library Manual

f08avc.2 [NP3645/7]

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, m ¼ hvaluei.
Constraint: pda � maxð1;mÞ.
On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ E, where

kEk2 ¼ Oð�ÞkAk2;

and � is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 8
3
m2ð3n�mÞ if m � n or

8
3
n2ð3m� nÞ if m > n.

To form the unitary matrix Q this function may be followed by a call to nag_zunglq (f08awc):

nag_zunglq (order,n,n,MIN(m,n),&a,pda,tau,&fail)

but note that the first dimension of the array a, specified by the parameter pda, must be at least n, which
may be larger than was required by nag_zgelqf (f08avc).

When m � n, it is often only the first m rows of Q that are required, and they may be formed by the call:

nag_zunglq (order,m,n,m,&a,pda,tau,&fail)

To apply Q to an arbitrary complex rectangular matrix C, this function may be followed by a call to
nag_zunmlq (f08axc). For example,

nag_zunmlq (order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n),&a,pda,
tau,&c,pdc,&fail)

forms the matrix product C ¼ QHC, where C is m by p.

The real analogue of this function is nag_dgelqf (f08ahc).

9 Example

To find the minimum-norm solutions of the under-determined systems of linear equations

Ax1 ¼ b1 and Ax2 ¼ b2

where b1 and b2 are the columns of the matrix B,

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08avc

[NP3645/7] f08avc.3

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i

�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

1
A

0
@

and

B ¼
�1:35þ 0:19i 4:83� 2:67i
9:41� 3:56i �7:28þ 3:34i

�7:57þ 6:93i 0:62þ 4:53i

1
A

0
@ :

9.1 Program Text

/* nag_zgelqf (f08avc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, m, n, nrhs, pda, pdb, tau_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *b=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define B(I,J) b[(J-1)*pdb + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define B(I,J) b[(I-1)*pdb + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08avc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%ld%ld%*[^\n] ", &m, &n, &nrhs);

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdb = n;

#else
pda = n;
pdb = nrhs;

#endif

tau_len = MIN(m,n);

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||

!(b = NAG_ALLOC(n * nrhs, Complex)) ||
!(tau = NAG_ALLOC(tau_len, Complex)))

f08avc NAG C Library Manual

f08avc.4 [NP3645/7]

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A and B from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= nrhs; ++j)

Vscanf(" (%lf , %lf)", &B(i,j).re, &B(i,j).im);
}

Vscanf("%*[^\n] ");

/* Compute the LQ factorization of A */
f08avc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08avc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Solve L*Y = B, storing the result in B */
f07tsc(order, Nag_Lower, Nag_NoTrans, Nag_NonUnitDiag, m,

nrhs, a, pda, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07tsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Set rows (M+1) to N of B to zero */
if (m < n)

{
for (i = m + 1; i <= n; ++i)

{
for (j = 1; j <= nrhs; ++j)

{
B(i,j).re = 0.0;
B(i,j).im = 0.0;

}
}

}

/* Compute minimum-norm solution X = (Q**H)*B in B */
f08axc(order, Nag_LeftSide, Nag_ConjTrans, n, nrhs, m, a, pda,

tau, b, pdb, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08axc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print minimum-norm solution(s) */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b, pdb,

Nag_BracketForm, "%7.4f", "Minimum-norm solution(s)",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08avc

[NP3645/7] f08avc.5

if (a) NAG_FREE(a);
if (b) NAG_FREE(b);
if (tau) NAG_FREE(tau);
return exit_status;

}

9.2 Program Data

f08avc Example Program Data
3 4 2 :Values of M, N and NRHS

(0.28,-0.36) (0.50,-0.86) (-0.77,-0.48) (1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
(0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A
(-1.35, 0.19) (4.83,-2.67)
(9.41,-3.56) (-7.28, 3.34)
(-7.57, 6.93) (0.62, 4.53) :End of matrix B

9.3 Program Results

f08avc Example Program Results

Minimum-norm solution(s)
1 2

1 (-2.8501, 6.4683) (-1.1682,-1.8886)
2 (1.6264,-0.7799) (2.8377, 0.7654)
3 (6.9290, 4.6481) (-1.7610,-0.7041)
4 (1.4048, 3.2400) (1.0518,-1.6365)

f08avc NAG C Library Manual

f08avc.6 (last) [NP3645/7]

	f08avc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

